Virtual Reality as an Educational Tool for Teaching Congenital Heart Disease

Sawyer Goetz, BSE
Co-authors: Eric Boeshart, MS. Connor Byeman, BS. Ravi Ashwath, MD.
September 9-10th, 2021
In the field of medicine, virtual reality (VR) is already used to teach anatomy, simulate surgical environments, and visualize patient-specific medical issues.

Students using VR and 3D visualization to study anatomy have reported that this technology aids them in better understanding the location of anatomic structures. There is evidence to suggest that using 3D visualization to study anatomy can improve student performance \[^{1,2,3}\].

In 2020, a Korean group of researchers reviewed the utility of three-dimensional visualization techniques (VR, augmented reality, 3D printing, etc.) in teaching congenital heart disease (CHD) and concluded, “A digital library of 3D images and 3D printed models embracing the entire spectrum of CHD should be established and would be tremendously beneficial for medical education.”\[^{4}\]
Project Aim:

Develop and Evaluate the Effectiveness of VR Educational Modules to Teach Congenital Heart Disease
Methods

Segment
Generate heart models from patient CT scans

Build
Combine models with other learning tools to create educational VR modules

Evaluate
Use quizzes and surveys to compare VR modules to traditional learning techniques
Methods: Segmentation

Use Materialise Mimics Medical (or equivalent segmentation software) to generate a heart model from the CT scan of a patient with a congenital heart defect.
Methods: Model Processing

Process models using Blender to hollow the model, add color, smooth blemishes, and reduce the file size
Methods: Module Development

- Combine heart models with informative text, diagrams, videos, and echocardiogram clips in Unity (a video game development software) to create an interactive, VR module

- Modules were created to teach the five cyanotic congenital heart diseases to medical students, residents, and fellows at UIHC
Interactive models and study materials

Introduction

- Transposition of the Great Arteries (TGA; AKA Transposition of the Great Arteries) is a congenital heart disease in which the major vessels that carry blood away from the heart—namely, the aorta and the pulmonary trunk—are switched. Instead of the aorta carrying oxygen-depleted blood from the right ventricle to the body, it carries oxygen-rich blood; and the pulmonary trunk carries oxygen-depleted blood from the left ventricle to the lungs.
- This is in contrast to the normal heart, where the aorta carries oxygen-depleted blood from the right ventricle and the pulmonary trunk carries oxygen-rich blood from the left ventricle.
- As a result, newborns with TGA present with signs of reduced oxygen delivery including cyanosis (blue discoloration of skin) and tachypnea.
Cutting tool to view internal features
Methods: Evaluation of Modules

Step 1: Pre-quiz over heart defect
Step 2: Participants spend 15 minutes interacting with VR module or study guide with equivalent information
Step 3: Post-quiz over heart defect
Step 4: Control group tests VR modules
Step 5: Survey over VR experience to measure enjoyability, engagement, and ease-of-use
Participant and Quiz Information

- 32 medical students from the Carver College of Medicine
- Participants were recruited via mass email to the college
- Students were randomly assigned one of two heart defects (Transposition of the Great Arteries or Tetralogy of Fallot) and to the experimental or control group
- The VR modules and the study guide contained the same information and diagrams
Results: Quiz Scores

Transposition of the Great Arteries

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-Quiz Average</th>
<th>Post-Quiz Average</th>
<th>Average Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=8)</td>
<td>44.79%</td>
<td>93.75%</td>
<td>48.96%</td>
</tr>
<tr>
<td>Experimental (n=8)</td>
<td>50%</td>
<td>91.66%</td>
<td>41.66%</td>
</tr>
</tbody>
</table>

*p=0.62 p=0.58

Tetralogy of Fallot

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-Quiz Average</th>
<th>Post-Quiz Average</th>
<th>Average Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=8)</td>
<td>47.92%</td>
<td>90.63%</td>
<td>42.71%</td>
</tr>
<tr>
<td>Experimental (n=8)</td>
<td>63.54%</td>
<td>93.75%</td>
<td>30.21%</td>
</tr>
</tbody>
</table>

*p=0.089 p=0.126
Results: Survey Answers

- The VR module was effective in helping me learn about congenital heart defects
- The VR system was intuitive to use
- The use of VR training modules would be a beneficial addition to my medical education
- I found the VR system to be uncomfortable or the VR headset caused unpleasant side effects (eye strain,...
- Interacting with the 3D heart models enabled me to understand the anatomy better than an equivalent 2D diagram would

How likely would you be to use [the VR educational modules] to study for an anatomy class? (5 = likely; 1 = not likely at all)

Average response: 4.22
Survey Answers cont.

Of the 16 members of the control groups who used both study materials:

- The anatomy was easier to understand by interacting with the 3D models than from the 2D diagrams
- Learning with the VR headset was more engaging than learning via the study guide
- Using the VR headset helped clarify things that were confusing to me from the study guide alone
Select comments from the survey

• “Compared to cyber anatomy or other anatomical computer models, this is second to none.“

• “I loved seeing the heart models in a 3d way. It was amazing to be able to control/manipulate the models and see cross-sections.“

• “This was much easier than looking at multiple 2D diagrams and trying to connect them into a ‘mental 3D image’.”

• “This was absolutely awesome. I would definitely use this as a learning module. I truly believe that this would be an incredibly valuable learning tool for learning both healthy anatomy and pathological specimens.”
Conclusions

• VR modules can be developed cheaply for the purposes of education and case-specific visualization of abnormal anatomy

• Although we could not show that VR was better or worse than a study guide at helping students learn and retain information about heart defects, the responses on the survey demonstrate that virtual reality can provide a welcome and beneficial supplement to the education of medical students when studying congenital heart defects
Looking Ahead

• We plan to use these modules to develop further VR projects involving cyanotic patient workup simulation
• The techniques described can be used to create educational modules for additional topics within Cardiology and other medical specialties
• Case-specific models can be made to assist surgeons and interventional cardiologists while preparing to treat patients with complex, abnormal cardiac anatomy
VR as an Educational Tool for Teaching Congenital Heart Disease

Questions?

Contact:
Sawyer Goetz, BSE
M2
Carver College of Medicine
641-425-4985
sawyer-goetz@uiowa.edu
VR as an Educational Tool for Teaching Congenital Heart Disease

Thank you!

Sawyer Goetz, BSE
M2
Carver College of Medicine

641-425-4985
sawyer-goetz@uiowa.edu
References

